
Marks Vriented Notes

O Level Physics (5054)

Also useful for IGCSE Physics (0625)

Authored by

Sir Abdul Ahad Irfan Poshni

TaughtWare Academy / Scholastic Islamiah / Ibne Umar Campus

TABLE OF CONTENTS

PREFACE	4
EXCLUDED TOPICS	5
UNIT 1: MEASUREMENT	6
UNIT 2: MOTION	8
UNIT 3: FORCES	
UNIT 4: DEFORMATION	
UNIT 5: MASS, WEIGHT AND DENSITY	13
UNIT 6: TURNING EFFECT OF FORCES	Error! Bookmark not defined.
UNIT 7: WORK, ENERGY AND POWER	14
UNIT 8: PRESSURE	14
UNIT 9: SIMPLE KINETIC THEORY OF MATTER	14
UNIT 10: MOMENTUM	14
UNIT 11: HEAT CAPACITY	
UNIT 12: CHANGES OF STATE	14
UNIT 13: TRANSFER OF THERMAL ENERGY	14
UNIT 14: GENERAL WAVE PROPERTIES	14
UNIT 15: ELECTROMAGNETIC SPECTRUM	14
UNIT 16: REFLECTION AND REFRACTION OF LIGHT	14
UNIT 17: CONVERGING AND DIVERGING LENSES	14
UNIT 18: SOUND	14
UNIT 19: STATIC ELECTRICITY	14
UNIT 20: CURRENT ELECTRICITY	14
UNIT 21: D.C. CIRCUITS	14
UNIT 22: PRACTICAL ELECTRIC CIRCUITRY	14
UNIT 23: MAGNETISM	14
UNIT 24: FORCE ON CONDUCTOR IN MAGNETIC FIEL	D14
LINIT 25: FLECTROMAGNETIC FEFFCTS	14

UNIT 26: INTRODUCTORY ELECTRONICS	. 14
UNIT 27: RADIOACTIVITY AND THE NUCLEAR ATOM	. 14
UNIT 28: SPACE PHYSICS	. 14
PAPER 4 (ATP) – IMPORTANT POINTS	. 14
SIGNIFICANT FIGURES	. 14

PRFFACF

I am truly grateful to my Creator, who has given me some wonderful mentors at certain Islamic schools, thus enabling me to achieve feats such as this. I am also thankful to those of my students, whose feedback helped me improve these notes.

You will find these notes pretty mark-oriented. These notes can be a replacement for a textbook if you have a teacher.

My advice to students is that once you have covered some topics in class, then adopt this workflow:

- use these notes to revise
- practice related past paper questions

Abdul Ahad Teacher

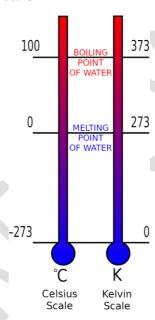
FXCLUDED TOPICS

Physics syllabus is revised by CAIE from time to time. Therefore, you may come across questions related to certain topics in past-papers that are no longer relevant. Here is a list of topics that have been excluded:

- Use of vernier scale
 (However, students still need to know other details related to vernier calipers, e.g., their ability to measure accurately to one-tenth of a millimeter, their ability to measure internal diameter, etc.)
- Transmission of pressure in hydraulic systems
- Use of manometer
- Principles of thermometry
- Practical thermometers
- Specific latent heat
 (However, latent heat has not been excluded.)
- Experiments related to refraction of sound waves
- Internal structure of a cathode-ray oscilloscope (CRO) (However, use of CRO has not been excluded.)
- Capacitors
- Applications of electrostatic charging
- Wiring a mains plug
- Methods of magnetization and demagnetization
- Magnetic screening
- Truth tables, transistors, logic gates, bistable and astable circuits
- Thermionic emission
- Power rating of resistors and other components
- Use of the formula: $E = mc^2$

UNIT 1: MEASUREMENT

- Physical quantities are either scalars or vectors.
- Scalars don't have a direction, e.g., distance, speed or time.
- Vectors have a direction, e.g., displacement, velocity or force.
- SI base units include:
 - o m
 - o kg
 - o S
 - A
 - K
- Derived units are based on base units, e.g.,
 - o Speed: m/s
 - o Density: kg/m³
- Prefixes can be used if a unit is too big or too small for a purpose:
 - o mega (M) means 1,000,000
 - o kilo (k) means 1,000
 - o centi (c) means $\frac{1}{100}$
 - o milli (m) means $\frac{1}{1000}$
 - o micro (μ) means $\frac{1}{1000000}$
- Measurement of Length:


NAME	LEAST COUNT	SUITABILITY	RANGE
Ruler	1 mm or 0.1 cm		1 m
Measuring tape	1 mm or 0.1 cm	can measure curved distance	10 m
Vernier calipers	0.1 mm or 0.01 cm	can also measure internal diameter	15 cm
Micrometer	0.01 mm or 0.001 cm	most accurate	2 cm

- Measurement using micrometer screwgauge:
 - $Length \ = \ FixedScaleReading \ + \ RotatingScaleReading \ x \ LeastCount \ \pm \ ZeroError$
- Zero error is the non-zero measurement (when vernier calipers or micrometer is) closed.
 - Zero error needs to be added or subtracted from the measurement for correction.

Measurement of time:

NAME	LEAST COUNT	REMARK
Watch / Clock	1 s	
Stopwatch	0.01 s	
Ticker-tape timer	$\frac{1}{50}s \text{ or } \frac{1}{60}s$	It has a vibrating arm which puts dots on a paper strip. Each gap (not dot) represents an interval.

• Measurement of temperature

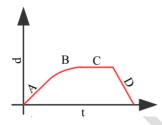
• Conversion between Kelvin temperature (T) and Celsius temperature (θ):

$$T = \theta + 273$$

- Temperature of a substance depends on average speed of its molecules.
- Absolute zero temperature: It is the lowest possible temperature of 0 K or
 -273 °C, because molecules have least speed (or kinetic energy).

UNIT 2: MOTION

- **Displacement:** It is distance in a particular direction.
- **Speed:** It is distance covered per unit time.

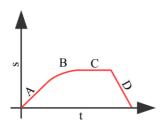

 $s = \frac{d}{t}$

Use this formula for velocity too

- Velocity: It is displacement covered per unit time.
- Acceleration: It is change in velocity per unit time.

$$a = \frac{v - u}{t}$$

- Acceleration happens when
 - o speed changes
 - o or direction changes
- d-t graph
 - Gradient represents speed
 - o Example:


A - Constant speed

B – Speed decreases (non-uniform speed)

C – Speed zero (object at rest)

D - Speeding back home (negative speed)

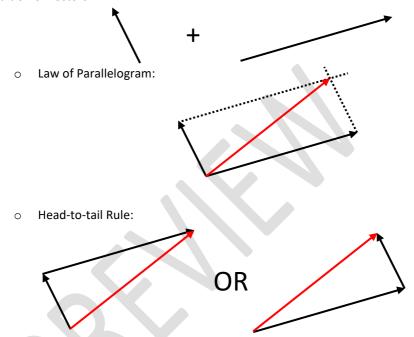
- s-t graph
 - o Gradient represents acceleration
 - o Area under graph represents distance
 - o Example:

A - Constant acceleration

 $B\,-\,Acceleration\,\,decreases\,\,(non\text{-uniform}\,\,$ acceleration)

C – Acceleration zero (terminal velocity)

D – Decelerating (or negative acceleration or accelerating in opposite direction)


- **Uniform acceleration:** It is when there are <u>equal increases</u> in velocity per unit time.
- **Non-uniform acceleration:** It is when there are <u>unequal increases</u> in velocity per unit time.
- **Uniform deceleration:** It is when there are <u>equal decreases</u> in velocity per unit time.
- Non-uniform deceleration: It is when there are <u>unequal decreases</u> in velocity per unit time.
- Uniform speed: It is when equal distances are covered per unit time.
- Non-uniform speed: It is when <u>unequal</u> distances are covered per unit time.
- · While driving,

stopping distance = thinking distance + braking distance

- Thinking distance is affected by tiredness and alcohol
- o Braking distance is affected by load, tyre surface, etc.

UNIT 3: FORCES

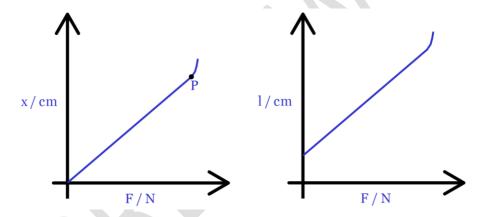
- Force: It is a push or pull.
 - o Unit: N
- These are also forces: weight; tension; friction; magnetic force; electric force; friction; air resistance; thrust; upthrust;
- Addition of vectors

- Laws of Motion
 - First Law: An object either <u>remains</u> at rest, or continues to move in a straight line at constant speed unless acted on by a resultant force.
 - Second Law: Acceleration of a mass is directly proportional to the resultant force.

$$F \propto a$$

$$F = m a$$

- Acceleration has the same direction as the resultant force.
- For an object going in a circle at constant speed, the resultant force (and hence acceleration) is towards the center of the circle.
- Third Law: When object A exerts a force on object B, then object B exerts an equal and opposite force on object A.


- When forces are balanced
 - resultant force is zero
 - o acceleration is zero
 - velocity is uniform
- With forces are unbalanced
 - o resultant force is non-zero
 - acceleration is not zero
 - velocity is not uniform
- Friction: It is a force that opposes motion.
 - It produces heat.
- Free-fall
 - o Without air
 - Constant acceleration (like that on moon).
 - Objects of different weights fall together.
 - o With air
 - Acceleration decreases (from <u>initial</u> 9.8 m/s² on Earth).
 - Resultant force is weight minus air-resistance.
 - When the resultant force becomes zero, there is no acceleration and the body is said to be falling with terminal velocity.

UNIT 4: DEFORMATION

- Force produces extension (or compression).
- Extension: It is the difference between new length and original length.
- Force is directly proportional to extension as long as limit of proportionality is not reached.

$$F \propto x$$
$$F = kx$$

- where k is spring's constant
- **Spring's constant:** It is force per unit extension.
 - Unit: N/m
 - spring's constant k reflects stiffness of a spring
- Two possible graphs:

- Point P is called limit of proportionality.
- Beyond limit of proportionality, spring becomes easier to extend.
 - This means that same increase in force will now produce a greater extension than before.

UNIT 5: MASS, WEIGHT AND DENSITY

- Mass: It is the amount of matter (substance) in a body.
- Weight: It is force on a mass in a gravitational field.
 - o It is equal to product of mass and gravitational field strength.

$$W = mg$$

Comparison:

WEIGHT	MASS
It is a force	It is amount of matter
Unit is newton	Unit is kilogram
Vector	Scalar
Different on earth and moon	Same on earth and moon
Measured using newton meter	Measured using balance

- Inertia: The inertia of an object is its resistance to changes in motion.
 - Mass is a measure of an object's inertia.
 - For example, a truck has more mass and hence more inertia than a car.
 So a truck is harder to move and harder to stop.
- Gravitational field strength of Earth is 9.8 N/kg.
- Acceleration due to gravity on Earth is 9.8 m/s².
- Measuring instruments:
 - Newton-meter: More the weight, more the spring stretches.
 - Using the formula W=mg, it can have a scale for mass too. The value of 'g' is assumed in such a case.
 - Beam balance: Measures mass by <u>comparing</u> the weight of an unknown mass with the weight of known mass (e.g., disc).
- Density: It is the mass per unit volume.

$$\rho = \frac{m}{V}$$

- O Unit: $\frac{kg}{m^3}$
- Measurement of volume: Volume can be found by
 - o Displacing a liquid
 - o For regular shaped objects a formula may be used, for example:
 - Block: $V = l \times w \times h$
 - Cylinder: $V = \pi r^2 \times l$
- Less dense liquids and gases rise above more dense liquids and gases respectively.

Notes by

No.1, Block: B, Phase 1, DHA, Lahore, Pakistan 0300-1000979

Get the latest edition of these notes from

Happy Bookers

Stationery | Graphics | Books Shop # 4, Business Archade, Walton Road, Defence Chowk, Lahore, Pakistan 0333-0000432